
DDD with CQRS and Redux
Domain Driven Design Cologne/Bonn Meetup / 17.07.17

Christoph Baudson / @sustainablepace



Christoph Baudson

● Software developer at REWE Digital since 08/2015

● @sustainablepace

● sustainablepace.net

https://twitter.com/sustainablepace
http://www.sustainablepace.net


Agenda

1) Redux + live coding 

2) Redux and Flux

3) React-Redux + live coding

4) React-Redux and CQRS

5) Domain driven design: Combining reducers



Redux



Redux
“My goal was to create a state management library with minimal API but 

completely predictable behavior”

Dan Abramov, creator of Redux

http://redux.js.org/

The Changelog #187

Getting Started With Redux

http://redux.js.org/
https://changelog.com/podcast/187
https://egghead.io/courses/getting-started-with-redux


Redux - Three Principles
● The state of your whole application is stored in an object tree within a single 

store.

● The only way to change the state is to emit an action, an object describing what 

happened.

● To specify how the state tree is transformed by actions, you write pure reducers.

http://redux.js.org/docs/introduction/ThreePrinciples.html

http://redux.js.org/docs/introduction/ThreePrinciples.html


Reducer
● “the most important concept in Redux”

● Inspired by Elm updaters

● type Reducer<S, A> = (state: S, action: A) => S

● must be pure functions

○ exact same output for given inputs

○ free of side-effects

○ do not put API calls into reducers!

● make state mutations predictable!

http://redux.js.org/docs/Glossary.html#reducer

http://redux.js.org/docs/Glossary.html#reducer


Redux live coding



Components and concepts
● Forsyth-Edwards-Notation (FEN)

● Chess.js

● Redux

https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation
https://github.com/jhlywa/chess.js/blob/master/README.md


Redux and Flux



Flux
● a pattern for managing data flow in your application

● most important concept is that data flows in one direction

https://github.com/facebook/flux/tree/master/examples/flux-concepts

https://github.com/facebook/flux/tree/master/examples/flux-concepts


Flux and Redux
Flux Redux
Action Action

A single Dispatcher No Dispatcher (but a (Redux) Store has a dispatch method)

Many (Flux) Stores A single (Redux) Store, many Reducers

State is mutated State is immutable

View Listener

http://redux.js.org/docs/introduction/PriorArt.html#flux

http://redux.js.org/docs/introduction/PriorArt.html#flux


React-Redux



Presentational and Container components 

Presentational Container 
Purpose How things look (markup, 

styles)
How things work (data fetching, state 
updates)

Aware of Redux No Yes

To read data Read data from props Subscribe to Redux state

To change data Invoke callbacks from props Dispatch Redux actions

Are written By hand Usually generated by React Redux

https://github.com/reactjs/react-redux


CQRS and React-Redux

connect(mapStateToProps, mapDispatchToProps)(Chessdiagram)

CQRS React-Redux 
Command MapDispatchToProps

Query MapStateToProps



React-Redux live coding



Components and concepts
● React

● React-Redux

● React-chessdiagram

● Forsyth-Edwards-Notation (FEN)

● Chess.js

● Redux

https://facebook.github.io/react/
https://github.com/reactjs/react-redux
https://github.com/jniemann66/react-chessdiagram/blob/master/api.md


React-Redux and CQRS



CQRS
“Implementing DDD”, Vaughn Vernon



CQRS React-Redux 
Command Processor MapDispatchToProps

Command Model Action Creator, Action

Command Model Store Middleware

Event Subscriber Reducer

Query Model State

Query Processor MapStateToProps

CQRS and React-Redux



Event Storming



Event Storming vs. React-Redux

Event Storming (React) Redux 
Command MapDispatchToProps Methods

Aggregate Action Creator

Domain Event Action

Read Model Reducer → State

UI MapStateToProps: State → Props



DDD: React + Redux = 



Components and concepts
● Redux combineReducers

● React

● React-Redux

● React-chessdiagram

● Forsyth-Edwards-Notation (FEN)

● Chess.js

● Redux

http://redux.js.org/docs/recipes/reducers/UsingCombineReducers.html


React and Redux hand in hand
● Files grouped by bounded context in separate folders

● Domain slicing via

○ Sub-components (React)

○ combineReducers (Redux)

● Tree hierarchy with root reducer and component



Elegant and simple

Redux is 
“genial einfach”

not 
“dumm einfach”

Gunter Dueck “Schwarmdumm”

https://www.omnisophie.com/bucher/schwarmdumm-so-bloed-sind-wir-nur-im-team/


Vielen DDDank :)
Christoph Baudson / @sustainablepace

Demo, slides, source code at http://chess.baudson.de

http://chess.baudson.de

